3.241 \(\int \frac{\text{csch}(c+d x)}{a+b \sinh (c+d x)} \, dx\)

Optimal. Leaf size=64 \[ \frac{2 b \tanh ^{-1}\left (\frac{b-a \tanh \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2+b^2}}\right )}{a d \sqrt{a^2+b^2}}-\frac{\tanh ^{-1}(\cosh (c+d x))}{a d} \]

[Out]

-(ArcTanh[Cosh[c + d*x]]/(a*d)) + (2*b*ArcTanh[(b - a*Tanh[(c + d*x)/2])/Sqrt[a^2 + b^2]])/(a*Sqrt[a^2 + b^2]*
d)

________________________________________________________________________________________

Rubi [A]  time = 0.0878481, antiderivative size = 64, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.263, Rules used = {2747, 3770, 2660, 618, 204} \[ \frac{2 b \tanh ^{-1}\left (\frac{b-a \tanh \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2+b^2}}\right )}{a d \sqrt{a^2+b^2}}-\frac{\tanh ^{-1}(\cosh (c+d x))}{a d} \]

Antiderivative was successfully verified.

[In]

Int[Csch[c + d*x]/(a + b*Sinh[c + d*x]),x]

[Out]

-(ArcTanh[Cosh[c + d*x]]/(a*d)) + (2*b*ArcTanh[(b - a*Tanh[(c + d*x)/2])/Sqrt[a^2 + b^2]])/(a*Sqrt[a^2 + b^2]*
d)

Rule 2747

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[b/(
b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] - Dist[d/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; Fre
eQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\text{csch}(c+d x)}{a+b \sinh (c+d x)} \, dx &=\frac{\int \text{csch}(c+d x) \, dx}{a}-\frac{b \int \frac{1}{a+b \sinh (c+d x)} \, dx}{a}\\ &=-\frac{\tanh ^{-1}(\cosh (c+d x))}{a d}+\frac{(2 i b) \operatorname{Subst}\left (\int \frac{1}{a-2 i b x+a x^2} \, dx,x,\tan \left (\frac{1}{2} (i c+i d x)\right )\right )}{a d}\\ &=-\frac{\tanh ^{-1}(\cosh (c+d x))}{a d}-\frac{(4 i b) \operatorname{Subst}\left (\int \frac{1}{-4 \left (a^2+b^2\right )-x^2} \, dx,x,-2 i b+2 a \tan \left (\frac{1}{2} (i c+i d x)\right )\right )}{a d}\\ &=-\frac{\tanh ^{-1}(\cosh (c+d x))}{a d}+\frac{2 b \tanh ^{-1}\left (\frac{b-a \tanh \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2+b^2}}\right )}{a \sqrt{a^2+b^2} d}\\ \end{align*}

Mathematica [A]  time = 0.0823074, size = 69, normalized size = 1.08 \[ \frac{\log \left (\tanh \left (\frac{1}{2} (c+d x)\right )\right )-\frac{2 b \tan ^{-1}\left (\frac{b-a \tanh \left (\frac{1}{2} (c+d x)\right )}{\sqrt{-a^2-b^2}}\right )}{\sqrt{-a^2-b^2}}}{a d} \]

Antiderivative was successfully verified.

[In]

Integrate[Csch[c + d*x]/(a + b*Sinh[c + d*x]),x]

[Out]

((-2*b*ArcTan[(b - a*Tanh[(c + d*x)/2])/Sqrt[-a^2 - b^2]])/Sqrt[-a^2 - b^2] + Log[Tanh[(c + d*x)/2]])/(a*d)

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 65, normalized size = 1. \begin{align*} -2\,{\frac{b}{da\sqrt{{a}^{2}+{b}^{2}}}{\it Artanh} \left ( 1/2\,{\frac{2\,a\tanh \left ( 1/2\,dx+c/2 \right ) -2\,b}{\sqrt{{a}^{2}+{b}^{2}}}} \right ) }+{\frac{1}{da}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(d*x+c)/(a+b*sinh(d*x+c)),x)

[Out]

-2/d*b/a/(a^2+b^2)^(1/2)*arctanh(1/2*(2*a*tanh(1/2*d*x+1/2*c)-2*b)/(a^2+b^2)^(1/2))+1/d/a*ln(tanh(1/2*d*x+1/2*
c))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)/(a+b*sinh(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.66225, size = 591, normalized size = 9.23 \begin{align*} \frac{\sqrt{a^{2} + b^{2}} b \log \left (\frac{b^{2} \cosh \left (d x + c\right )^{2} + b^{2} \sinh \left (d x + c\right )^{2} + 2 \, a b \cosh \left (d x + c\right ) + 2 \, a^{2} + b^{2} + 2 \,{\left (b^{2} \cosh \left (d x + c\right ) + a b\right )} \sinh \left (d x + c\right ) + 2 \, \sqrt{a^{2} + b^{2}}{\left (b \cosh \left (d x + c\right ) + b \sinh \left (d x + c\right ) + a\right )}}{b \cosh \left (d x + c\right )^{2} + b \sinh \left (d x + c\right )^{2} + 2 \, a \cosh \left (d x + c\right ) + 2 \,{\left (b \cosh \left (d x + c\right ) + a\right )} \sinh \left (d x + c\right ) - b}\right ) -{\left (a^{2} + b^{2}\right )} \log \left (\cosh \left (d x + c\right ) + \sinh \left (d x + c\right ) + 1\right ) +{\left (a^{2} + b^{2}\right )} \log \left (\cosh \left (d x + c\right ) + \sinh \left (d x + c\right ) - 1\right )}{{\left (a^{3} + a b^{2}\right )} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)/(a+b*sinh(d*x+c)),x, algorithm="fricas")

[Out]

(sqrt(a^2 + b^2)*b*log((b^2*cosh(d*x + c)^2 + b^2*sinh(d*x + c)^2 + 2*a*b*cosh(d*x + c) + 2*a^2 + b^2 + 2*(b^2
*cosh(d*x + c) + a*b)*sinh(d*x + c) + 2*sqrt(a^2 + b^2)*(b*cosh(d*x + c) + b*sinh(d*x + c) + a))/(b*cosh(d*x +
 c)^2 + b*sinh(d*x + c)^2 + 2*a*cosh(d*x + c) + 2*(b*cosh(d*x + c) + a)*sinh(d*x + c) - b)) - (a^2 + b^2)*log(
cosh(d*x + c) + sinh(d*x + c) + 1) + (a^2 + b^2)*log(cosh(d*x + c) + sinh(d*x + c) - 1))/((a^3 + a*b^2)*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{csch}{\left (c + d x \right )}}{a + b \sinh{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)/(a+b*sinh(d*x+c)),x)

[Out]

Integral(csch(c + d*x)/(a + b*sinh(c + d*x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.58671, size = 144, normalized size = 2.25 \begin{align*} -\frac{b \log \left (\frac{{\left | 2 \, b e^{\left (d x + c\right )} + 2 \, a - 2 \, \sqrt{a^{2} + b^{2}} \right |}}{{\left | 2 \, b e^{\left (d x + c\right )} + 2 \, a + 2 \, \sqrt{a^{2} + b^{2}} \right |}}\right )}{\sqrt{a^{2} + b^{2}} a d} - \frac{\log \left (e^{\left (d x + c\right )} + 1\right )}{a d} + \frac{\log \left ({\left | e^{\left (d x + c\right )} - 1 \right |}\right )}{a d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)/(a+b*sinh(d*x+c)),x, algorithm="giac")

[Out]

-b*log(abs(2*b*e^(d*x + c) + 2*a - 2*sqrt(a^2 + b^2))/abs(2*b*e^(d*x + c) + 2*a + 2*sqrt(a^2 + b^2)))/(sqrt(a^
2 + b^2)*a*d) - log(e^(d*x + c) + 1)/(a*d) + log(abs(e^(d*x + c) - 1))/(a*d)